Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.156
Filtrar
1.
Nat Commun ; 15(1): 3102, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600072

RESUMO

Several studies have suggested the imprinting of SARS-CoV-2 immunity by original immune challenge without addressing the formation of the de novo response to successive antigen exposures. As this is crucial for the development of the original antigenic sin, we assessed the immune response against the mutated epitopes of omicron SARS-CoV-2 after vaccine breakthrough. Our data demonstrate a robust humoral response in thrice-vaccinated individuals following omicron breakthrough which is a recall of vaccine-induced memory. The humoral and memory B cell responses against the altered regions of the omicron surface proteins are impaired. The T cell responses to mutated epitopes of the omicron spike protein are present due to the high cross-reactivity of vaccine-induced T cells rather than the formation of a de novo response. Our findings, therefore, underpin the speculation that the imprinting of SARS-CoV-2 immunity by vaccination may lead to the development of original antigenic sin if future variants overcome the vaccine-induced immunity.


Assuntos
Infecções Irruptivas , Vacinas , Humanos , Vacinação , Epitopos , SARS-CoV-2 , Imunidade , Anticorpos Antivirais , Anticorpos Neutralizantes
2.
BMC Pharmacol Toxicol ; 25(1): 29, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641625

RESUMO

BACKGROUND: Monoclonal antibody therapy for Covid-19 springs up all over the world and get some efficiency. This research aims to explore the treating effect of BRII-196(Ambavirumab) plus BRII-198(Lomisivir) on Covid-19. METHODS: In this retrospective cohort research, patients received standard care or plus BRII-196 /BRII-198 monoclonal antibodies. General comparison of clinical indexes and prognosis between Antibody Group and Control Group was made. Further, according to the antibody using time and patients' condition, subgroups included Early antibody group, Late antibody group, Mild Antibody Group, Mild Control Group, Severe Antibody Group and Severe Control Group. RESULTS: Length of stay(LOS) and interval of Covid-19 nucleic acid from positive to negative of Antibody Group were 12.0(IQR 9.0-15.0) and 14.0(IQR 10.0-16.0) days, less than those(13.0 (IQR 11.0-18.0) and 15.0 (IQR 12.8-17.0) days) of Control Group(p = 0.004, p = 0.004). LOS(median 10days) of Early Antibody Group was the shortest, significantly shorter than that of Control Group (median 13days)(p < 0.001). Interval(median 12days) of Covid-19 nucleic acid from positive to negative of Early Antibody Group also was significantly shorter than that of Control Group(median 15days) and Late Antibody Group(median 14days)(p = 0.001, p = 0.042). LOS(median 12days) and interval(median 13days) of Covid-19 nucleic acid from positive to negative of Mild Antibody Group was shorter than that of Mild Control Group(median 13days; median 14.5days)(p = 0.018, p = 0.033). CONCLUSION: The neutralizing antibody therapy, BRII-196 plus BRII-198 could shorten LOS and interval of Covid-19 nucleic acid from positive to negative. However, it didn't show efficacy for improving clinical outcomes among severe or critical cases.


Assuntos
Anticorpos Monoclonais Humanizados , COVID-19 , Ácidos Nucleicos , Humanos , SARS-CoV-2 , Estudos Retrospectivos , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Monoclonais/uso terapêutico
3.
Biomed Environ Sci ; 37(2): 178-186, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38582980

RESUMO

Objective: This study aimed to compare the current Essen rabies post-exposure immunization schedule (0-3-7-14-28) in China and the simple 4-dose schedule (0-3-7-14) newly recommended by the World Health Organization in terms of their safety, efficacy, and protection. Methods: Mice were vaccinated according to different immunization schedules, and blood was collected for detection of rabies virus neutralizing antibodies (RVNAs) on days 14, 21, 28, 35, and 120 after the first immunization. Additionally, different groups of mice were injected with lethal doses of the CVS-11 virus on day 0, subjected to different rabies immunization schedules, and assessed for morbidity and death status. In a clinical trial, 185 rabies-exposed individuals were selected for post-exposure vaccination according to the Essen schedule, and blood was collected for RVNAs detection on days 28 and 42 after the first immunization. Results: A statistically significant difference in RVNAs between mice in the Essen and 0-3-7-14 schedule groups was observed on the 35th day ( P < 0.05). The groups 0-3-7-14, 0-3-7-21, and 0-3-7-28 showed no statistically significant difference ( P > 0.05) in RVNAs levels at any time point. The post-exposure immune protective test showed that the survival rate of mice in the control group was 20%, whereas that in the immunization groups was 40%. In the clinical trial, the RVNAs positive conversion rates on days 28 (14 days after 4 doses) and 42 (14 days after 5 doses) were both 100%, and no significant difference in RVNAs levels was observed ( P > 0.05). Conclusion: The simple 4-dose schedule can produce sufficient RVNAs levels, with no significant effect of a delayed fourth vaccine dose (14-28 d) on the immunization potential.


Assuntos
Vacina Antirrábica , Vírus da Raiva , Raiva , Animais , Camundongos , Raiva/prevenção & controle , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinação , China , Profilaxia Pós-Exposição
4.
PLoS Pathog ; 20(4): e1012134, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38603762

RESUMO

Monoclonal antibodies (mAbs) are an important class of antiviral therapeutics. MAbs are highly selective, well tolerated, and have long in vivo half-life as well as the capacity to induce immune-mediated virus clearance. Their activities can be further enhanced by integration of their variable fragments (Fvs) into bispecific antibodies (bsAbs), affording simultaneous targeting of multiple epitopes to improve potency and breadth and/or to mitigate against viral escape by a single mutation. Here, we explore a bsAb strategy for generation of pan-ebolavirus and pan-filovirus immunotherapeutics. Filoviruses, including Ebola virus (EBOV), Sudan virus (SUDV), and Marburg virus (MARV), cause severe hemorrhagic fever. Although there are two FDA-approved mAb therapies for EBOV infection, these do not extend to other filoviruses. Here, we combine Fvs from broad ebolavirus mAbs to generate novel pan-ebolavirus bsAbs that are potently neutralizing, confer protection in mice, and are resistant to viral escape. Moreover, we combine Fvs from pan-ebolavirus mAbs with those of protective MARV mAbs to generate pan-filovirus protective bsAbs. These results provide guidelines for broad antiviral bsAb design and generate new immunotherapeutic candidates.


Assuntos
Anticorpos Biespecíficos , Anticorpos Antivirais , Ebolavirus , Doença pelo Vírus Ebola , Animais , Camundongos , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Doença pelo Vírus Ebola/virologia , Anticorpos Antivirais/imunologia , Humanos , Filoviridae/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Monoclonais/imunologia , Feminino , Camundongos Endogâmicos BALB C , Infecções por Filoviridae/imunologia , Infecções por Filoviridae/terapia , Infecções por Filoviridae/prevenção & controle
5.
PLoS One ; 19(4): e0300524, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635805

RESUMO

To address the need for multivalent vaccines against Coronaviridae that can be rapidly developed and manufactured, we compared antibody responses against SARS-CoV, SARS-CoV-2, and several variants of concern in mice immunized with mRNA-lipid nanoparticle vaccines encoding homodimers or heterodimers of SARS-CoV/SARS-CoV-2 receptor-binding domains. All vaccine constructs induced robust anti-RBD antibody responses, and the heterodimeric vaccine elicited an IgG response capable of cross-neutralizing SARS-CoV, SARS-CoV-2 Wuhan-Hu-1, B.1.351 (beta), and B.1.617.2 (delta) variants.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , Humanos , SARS-CoV-2/genética , Vacinas Combinadas , Anticorpos Neutralizantes , 60547 , Glicoproteína da Espícula de Coronavírus/genética , COVID-19/prevenção & controle , RNA Mensageiro/genética , Vacinas de mRNA , Lipídeos , Anticorpos Antivirais
6.
Front Cell Infect Microbiol ; 14: 1371695, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638823

RESUMO

Introduction: SARS-CoV-2 vaccines production and distribution enabled the return to normalcy worldwide, but it was not fast enough to avoid the emergence of variants capable of evading immune response induced by prior infections and vaccination. This study evaluated, against Omicron sublineages BA.1, BA.5 and BQ.1.1, the antibody response of a cohort vaccinated with a two doses CoronaVac protocol and followed by two heterologous booster doses. Methods: To assess vaccination effectiveness, serum samples were collected from 160 individuals, in 3 different time points (9, 12 and 18 months after CoronaVac protocol). For each time point, individuals were divided into 3 subgroups, based on the number of additional doses received (No booster, 1 booster and 2 boosters), and a viral microneutralization assay was performed to evaluate neutralization titers and seroconvertion rate. Results: The findings presented here show that, despite the first booster, at 9m time point, improved neutralization level against omicron ancestor BA.1 (133.1 to 663.3), this trend was significantly lower for BQ.1.1 and BA.5 (132.4 to 199.1, 63.2 to 100.2, respectively). However, at 18m time point, the administration of a second booster dose considerably improved the antibody neutralization, and this was observed not only against BA.1 (2361.5), but also against subvariants BQ.1.1 (726.1) and BA.5 (659.1). Additionally, our data showed that, after first booster, seroconvertion rate for BA.5 decayed over time (93.3% at 12m to 68.4% at 18m), but after the second booster, seroconvertion was completely recovered (95% at 18m). Discussion: Our study reinforces the concerns about immunity evasion of the SARS-CoV-2 omicron subvariants, where BA.5 and BQ.1.1 were less neutralized by vaccine induced antibodies than BA.1. On the other hand, the administration of a second booster significantly enhanced antibody neutralization capacity against these subvariants. It is likely that, as new SARS-CoV-2 subvariants continue to emerge, additional immunizations will be needed over time.


Assuntos
Vacina BNT162 , Vacinas contra COVID-19 , Vacinas de Produtos Inativados , Humanos , Anticorpos Antivirais , Imunização , SARS-CoV-2 , Anticorpos Neutralizantes
7.
Elife ; 132024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656290

RESUMO

Background: End-stage renal disease (ESRD) patients experience immune compromise characterized by complex alterations of both innate and adaptive immunity, and results in higher susceptibility to infection and lower response to vaccination. This immune compromise, coupled with greater risk of exposure to infectious disease at hemodialysis (HD) centers, underscores the need for examination of the immune response to the COVID-19 mRNA-based vaccines. Methods: The immune response to the COVID-19 BNT162b2 mRNA vaccine was assessed in 20 HD patients and cohort-matched controls. RNA sequencing of peripheral blood mononuclear cells was performed longitudinally before and after each vaccination dose for a total of six time points per subject. Anti-spike antibody levels were quantified prior to the first vaccination dose (V1D0) and 7 d after the second dose (V2D7) using anti-spike IgG titers and antibody neutralization assays. Anti-spike IgG titers were additionally quantified 6 mo after initial vaccination. Clinical history and lab values in HD patients were obtained to identify predictors of vaccination response. Results: Transcriptomic analyses demonstrated differing time courses of immune responses, with prolonged myeloid cell activity in HD at 1 wk after the first vaccination dose. HD also demonstrated decreased metabolic activity and decreased antigen presentation compared to controls after the second vaccination dose. Anti-spike IgG titers and neutralizing function were substantially elevated in both controls and HD at V2D7, with a small but significant reduction in titers in HD groups (p<0.05). Anti-spike IgG remained elevated above baseline at 6 mo in both subject groups. Anti-spike IgG titers at V2D7 were highly predictive of 6-month titer levels. Transcriptomic biomarkers after the second vaccination dose and clinical biomarkers including ferritin levels were found to be predictive of antibody development. Conclusions: Overall, we demonstrate differing time courses of immune responses to the BTN162b2 mRNA COVID-19 vaccination in maintenance HD subjects comparable to healthy controls and identify transcriptomic and clinical predictors of anti-spike IgG titers in HD. Analyzing vaccination as an in vivo perturbation, our results warrant further characterization of the immune dysregulation of ESRD. Funding: F30HD102093, F30HL151182, T32HL144909, R01HL138628. This research has been funded by the University of Illinois at Chicago Center for Clinical and Translational Science (CCTS) award UL1TR002003.


Assuntos
Anticorpos Antivirais , Vacina BNT162 , Vacinas contra COVID-19 , COVID-19 , Falência Renal Crônica , Diálise Renal , SARS-CoV-2 , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , COVID-19/imunologia , COVID-19/prevenção & controle , Vacina BNT162/imunologia , Vacina BNT162/administração & dosagem , Idoso , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Anticorpos Antivirais/sangue , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Falência Renal Crônica/imunologia , Transcriptoma , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Imunoglobulina G/sangue , Vacinas de mRNA/imunologia , Vacinação
8.
Nat Commun ; 15(1): 3368, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643233

RESUMO

The immune escape of Omicron variants significantly subsides by the third dose of an mRNA vaccine. However, it is unclear how Omicron variant-neutralizing antibodies develop under repeated vaccination. We analyze blood samples from 41 BNT162b2 vaccinees following the course of three injections and analyze their B-cell receptor (BCR) repertoires at six time points in total. The concomitant reactivity to both ancestral and Omicron receptor-binding domain (RBD) is achieved by a limited number of BCR clonotypes depending on the accumulation of somatic hypermutation (SHM) after the third dose. Our findings suggest that SHM accumulation in the BCR space to broaden its specificity for unseen antigens is a counterprotective mechanism against virus variant immune escape.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Vacina BNT162 , COVID-19/prevenção & controle , SARS-CoV-2/genética , Anticorpos Neutralizantes , Anticorpos Antivirais
9.
Front Immunol ; 15: 1365803, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646520

RESUMO

Introduction: Angiotensin converting-enzyme 2 (ACE2) is an enzyme catalyzing the conversion of angiotensin 2 into angiotensin 1-7. ACE2 also serves as the receptor of several coronaviruses, including SARS-CoV-1 and SARS-CoV-2. Therefore, ACE2 could be utilized as a therapeutic target for treating these coronaviruses, ideally lacking enzymatic function. Methods: Based on structural analysis, specific mutations were introduced to generate mutants of ACE2 and ACE2-Fc (fusion protein of ACE2 and Fc region of IgG1). The enzyme activity, binding affinity, and neutralization abilities were measured. Results and discussion: As predicted, five mutants (AMI081, AMI082, AMI083, AMI084, AMI090) have completely depleted ACE2 enzymatic activities. More importantly, enzyme-linked receptor-ligand assay (ELRLA) and surface plasmon resonance (SPR) results showed that 2 mutants (AMI082, AMI090) maintained binding activity to the viral spike proteins of SARS-CoV-1 and SARS-CoV-2. In An in vitro neutralization experiment using a pseudovirus, SARS-CoV-2 S1 spike protein-packed lentivirus particles, was also performed, showing that AMI082 and AMI090 significantly reduced GFP transgene expression. Further, in vitro virulent neutralization assays using SARS-CoV-2 (strain name: USA-WA1/2020) showed that AMI082 and AMI090 had remarkable inhibitory effects, indicated by comparable IC50 to wildtype ACE2 (5.33 µg/mL). In addition to the direct administration of mutant proteins, an alternative strategy for treating COVID-19 is through AAV delivery to achieve long-lasting effects. Therefore, AAV5 encoding AMI082 and AMI090 were packaged and transgene expression was assessed. In summary, these ACE2 mutants represent a novel approach to prevent or treat COVID-19 and other viruses with the same spike protein.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Mutação , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Humanos , SARS-CoV-2/genética , COVID-19/genética , COVID-19/virologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia , Tratamento Farmacológico da COVID-19 , Anticorpos Neutralizantes/imunologia , Animais , Células HEK293 , Ligação Proteica
10.
BMC Infect Dis ; 24(1): 428, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649824

RESUMO

BACKGROUND: The impact of the constantly evolving severe acute respiratory syndrome coronavirus 2 on the effectiveness of early coronavirus disease 2019 (COVID-19) treatments is unclear. Here, we report characteristics and acute clinical outcomes of patients with COVID-19 treated with a monoclonal antibody (mAb; presumed to be sotrovimab) across six distinct periods covering the emergence and predominance of Omicron subvariants (BA.1, BA.2, and BA.5) in England. METHODS: Retrospective cohort study using data from the Hospital Episode Statistics database from January 1-July 31, 2022. Included patients received a mAb delivered by a National Health Service (NHS) hospital as a day-case, for which the primary diagnosis was COVID-19. Patients were presumed to have received sotrovimab based on NHS data showing that 99.98% of COVID-19-mAb-treated individuals received sotrovimab during the study period. COVID-19-attributable hospitalizations were reported overall and across six distinct periods of Omicron subvariant prevalence. Subgroup analyses were conducted in patients with severe renal disease and active cancer. RESULTS: Among a total of 10,096 patients, 1.0% (n = 96) had a COVID-19-attributable hospitalization, 4.6% (n = 465) had a hospital visit due to any cause, and 0.3% (n = 27) died due to any cause during the acute period. COVID-19-attributable hospitalization rates were consistent among subgroups, and no significant differences were observed across periods of Omicron subvariant predominance. CONCLUSIONS: Levels of COVID-19-attributable hospitalizations and deaths were low in mAb-treated patients and among subgroups. Similar hospitalization rates were observed whilst Omicron BA.1, BA.2, and BA.5 were predominant, despite reported reductions in in vitro neutralization activity of sotrovimab against BA.2 and BA.5.


Assuntos
Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes , Tratamento Farmacológico da COVID-19 , COVID-19 , Hospitalização , SARS-CoV-2 , Humanos , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Inglaterra/epidemiologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Idoso , COVID-19/mortalidade , COVID-19/epidemiologia , Adulto , Hospitalização/estatística & dados numéricos , Idoso de 80 Anos ou mais , Resultado do Tratamento , Adulto Jovem , Anticorpos Monoclonais/uso terapêutico , Hospitais/estatística & dados numéricos , Medicina Estatal , Antivirais/uso terapêutico , Adolescente
11.
Immun Inflamm Dis ; 12(4): e1262, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38652021

RESUMO

BACKGROUND AND AIM: This systematic review and meta-analysis aimed to compare the effectiveness and safety of molnupiravir and sotrovimab in the treatment of patients with coronavirus disease 2019 (COVID-19). METHODS: Cochrane Library, Web of Science, PubMed, medRxiv, and Google Scholar were systematically searched to identify relevant evidence up to December 2023. The risk of bias was assessed using the risk of bias in nonrandomized studies of interventions tool. Data were analyzed using Comprehensive Meta-Analysis (CMA). RESULTS: Our search identified and included 13 studies involving 16166 patients. The meta-analysis revealed a significant difference between the molnupiravir and sotrovimab groups in terms of the mortality rate (odds ratio [OR] = 2.07, 95% confidence interval [CI]: 1.16, 3.70). However, no significant difference was observed between the two groups in terms of hospitalization rate (OR = 0.71, 95% CI: 0.47, 1.06), death or hospitalization rate (OR = 1.51, 95% CI: 0.81, 2.83), and intensive care unit admission (OR = 0.59, 95% CI: 0.07, 4.84). In terms of safety, molnupiravir was associated with a higher incidence of adverse events (OR = 1.67, 95% CI: 1.21, 2.30). CONCLUSION: The current findings indicate that sotrovimab may be more effective than molnupiravir in reducing the mortality rate in COVID-19 patients. However, no statistical difference was observed between the two treatments for other effectiveness outcomes. The certainty of evidence for these findings was rated as low or moderate. Further research is required to provide a better comparison of these interventions in treating COVID-19 patients.


Assuntos
Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes , Antivirais , Tratamento Farmacológico da COVID-19 , Citidina , Citidina/análogos & derivados , Hidroxilaminas , SARS-CoV-2 , Humanos , Hidroxilaminas/uso terapêutico , Citidina/uso terapêutico , Antivirais/uso terapêutico , Antivirais/efeitos adversos , SARS-CoV-2/efeitos dos fármacos , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/efeitos adversos , COVID-19/mortalidade , COVID-19/virologia , Resultado do Tratamento , Hospitalização/estatística & dados numéricos
12.
Emerg Infect Dis ; 30(5): 1050-1052, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38666742

RESUMO

Although a vaccine against SARS-CoV-2 Omicron-XBB.1.5 variant is available worldwide and recent infection is protective, the lack of recorded infection data highlights the need to assess variant-specific antibody neutralization levels. We analyzed IgG levels against receptor-binding domain-specific SARS-CoV-2 ancestral strain as a correlate for high neutralizing titers against XBB variants.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Imunoglobulina G , SARS-CoV-2 , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/genética , COVID-19/imunologia , COVID-19/epidemiologia , COVID-19/prevenção & controle , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Israel/epidemiologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Vacinas contra COVID-19/imunologia , Masculino , Adulto , Pessoa de Meia-Idade , Feminino , Idoso , Testes de Neutralização
13.
Viral Immunol ; 37(3): 167-175, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38574259

RESUMO

Zika virus (ZIKV) is an emerging flavivirus associated with several neurological diseases such as Guillain-Barré syndrome in adults and microcephaly in newborn children. Its distribution and mode of transmission (via Aedes aegypti and Aedes albopictus mosquitoes) collectively cause ZIKV to be a serious concern for global health. High genetic homology of flaviviruses and shared ecology is a hurdle for accurate detection. Distinguishing infections caused by different viruses based on serological recognition can be misleading as many anti-flavivirus monoclonal antibodies (mAbs) discovered to date are highly cross-reactive, especially those against the envelope (E) protein. To provide more specific research tools, we produced ZIKV E directed hybridoma cell lines and characterized two highly ZIKV-specific mAb clones (mAbs A11 and A42) against several members of the Flavivirus genus. Epitope mapping of mAb A11 revealed glycan loop specificity in Domain I of the ZIKV E protein. The development of two highly specific mAbs targeting the surface fusion protein of ZIKV presents a significant advancement in research capabilities as these can be employed as essential tools to enhance our understanding of ZIKV identification on infected cells ex vivo or in culture.


Assuntos
Aedes , Flavivirus , Infecção por Zika virus , Zika virus , Animais , Recém-Nascido , Humanos , Proteínas do Envelope Viral , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais
14.
J Med Virol ; 96(4): e29608, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38623750

RESUMO

Little is known about the protection conferred by antibodies from natural human papillomavirus (HPV) infection. Our objective was to evaluate the association between HPV16 seroreactivity and HPV16 redetection, newly detected HPV infections, and loss of HPV DNA detection during follow-up. We analyzed data from 2462 unvaccinated Brazilian women. HPV16 IgG and neutralizing antibodies at baseline were assessed by enzyme-linked immunosorbent assay (n = 1975) and by the pseudovirus-based papillomavirus neutralization assay (n = 487). HPV detection, genotyping, and viral load were assessed by PCR-based methods. The associations were analyzed by Cox proportional hazards models. We observed a positive association between HPV16 IgG seroreactivity and redetection of HPV16 infections. Age-adjusted hazard ratios (HR) with 95% confidence intervals (CI) ranged from 2.45 (1.04-5.74) to 5.10 (1.37-19.00). Positive associations were also observed between HPV16 IgG antibodies and (1) newly detected HPV infections by genotypes unrelated to HPV16 (age-adjusted HR [95% CI] = 1.32 [1.08-1.2]) and (2) loss of detection of HPV infections by genotypes unrelated to HPV16 (age-adjusted HR [95% CI] = 1.24 [1.03-1.50]). Naturally developed HPV16 antibodies do not prevent recurrent HPV infections. Overall HPV16 IgG and neutralizing antibodies seem to be serological markers for latent or past infections.


Assuntos
Infecções por Papillomavirus , Humanos , Feminino , Infecções por Papillomavirus/diagnóstico , Papillomavirus Humano 16/genética , Anticorpos Antivirais , Imunoglobulina G , Anticorpos Neutralizantes
15.
J Med Virol ; 96(4): e29598, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38624044

RESUMO

We estimated the dynamics of the neutralizing response against XBB sublineages and T cell response in persons with HIV (PWH) with previous AIDS and/or CD4 < 200/mm3 receiving the bivalent original strain/BA.4-5 booster dose in fall 2022. Samples were collected before the shot (Day 0), 15 days, 3, and 6 months after. PWH were stratified by immunization status: hybrid immunity (HI; vaccination plus COVID-19) versus nonhybrid immunity (nHI; vaccination only). Fifteen days after the booster, 16% and 30% of PWH were nonresponders in terms of anti-XBB.1.16 or anti-EG.5.1 nAbs, respectively. Three months after, a significant waning of anti-XBB.1.16, EG.5.1 and -XBB.1 nAbs was observed both in HI and nHI but nAbs in HI were higher than in nHI. Six months after both HI and nHI individuals displayed low mean levels of anti-XBB.1.16 and EG.5.1 nAbs. Regarding T cell response, IFN-γ values were stable over time and similar in HI and nHI. Our data showed that in PWH, during the prevalent circulation of the XBB.1.16, EG.5.1, and other XBB sublineages, a mRNA bivalent vaccine might not confer broad protection against them. With a view to the 2023/2024 vaccination campaign, the use of the monovalent XBB.1.5 mRNA vaccine should be urgently warranted in PWH to provide adequate protection.


Assuntos
COVID-19 , Infecções por HIV , Humanos , COVID-19/prevenção & controle , Programas de Imunização , RNA Mensageiro , Estações do Ano , Vacinas de mRNA , Anticorpos Neutralizantes , Anticorpos Antivirais
16.
Genes Immun ; 25(2): 158-167, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570727

RESUMO

In this study, antibody response and a single-cell RNA-seq analysis were conducted on peripheral blood mononuclear cells from five different groups: naïve subjects vaccinated with AZD1222 (AZ) or Ad5-nCoV (Cso), individuals previously infected and later vaccinated (hybrid) with AZD1222 (AZ-hb) or Ad5-nCoV (Cso-hb), and those who were infected and had recovered from COVID-19 (Inf). The results showed that AZ induced more robust neutralizing antibody responses than Cso. The single-cell RNA data revealed a high frequency of memory B cells in the Cso and Cso-hb. In contrast, AZ and AZ-hb groups exhibited the highest proportion of activated naïve B cells expressing CXCR4. Transcriptomic analysis of CD4+ and CD8+ T cells demonstrated a heterogeneous response following vaccination, hybrid immunity, or natural infection. However, a single dose of Ad5-nCoV was sufficient to strongly activate CD4+ T cells (naïve and memory) expressing ANX1 and FOS, similar to the hybrid response observed with AZ. An interesting finding was the robust activation of a subset of CD8+ T cells expressing GZMB, GZMH, and IFNG genes in the Cso-hb group. Our findings suggest that both vaccines effectively stimulated the cellular immune response; however, the Ad5-nCoV induced a more robust CD8+ T-cell response in previously infected individuals.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Linfócitos T CD8-Positivos , Adenoviridae/genética , ChAdOx1 nCoV-19 , Leucócitos Mononucleares , Perfilação da Expressão Gênica , Imunidade Adaptativa , Anticorpos Neutralizantes/genética , Anticorpos Antivirais/genética
17.
PLoS One ; 19(4): e0298033, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38626137

RESUMO

This study determined the seropositive rates and levels of antibodies to severe acute respiratory syndrome coronavirus-2 in 50 patients and 108 vaccinees using microneutralization test (MNT), surrogate virus neutralization test (sVNT), chemiluminescent microparticle immunoassay (CMIA), and electrochemiluminescence immunoassay (ECLIA). MNT, as the reference method, employed living clade S and Delta viruses to measure neutralizing (NT) antibodies, while sVNT employed wild type strain and Delta receptor-binding domains (RBD) as the test antigens to measure sVNT antibodies. CMIA and ECLIA employed only one version of RBD to measure the binding antibodies. Our study performed S gene sequencing of the test virus to exclude undesired mutants that might lead to changes in antibody levels in MNT assay. We showed that spike protein amino acid sequences of our Delta virus contained 13 amino acid changes, with 3 related to the reduced neutralization. The MNT assay showed a significant reduction in seropositive rates and antibody levels in the patients' sera when the Delta variant replaced clade S as the test virus. In contrast, the seropositive rates determined by sVNT assay using wild type strain RBD and Delta RBD were non-significantly different, suggesting that sVNT assay could not identify the difference between the antigenicity of wild type RBD and Delta RBD. Furthermore, the correlation between the levels of NT and sVNT antibodies was moderate with the patients' sera but modest with the post-vaccination sera. The seropositive rates in the patients, as determined by CMIA or ECLIA, were not different from the MNT assay using clade S, but not Delta, as the test virus. In all analyses, the correlations between the antibody levels measured by MNT and the other 3 assays were modest to moderate, with the r-values of 0.3500-0.7882.


Assuntos
COVID-19 , Vacinas , Humanos , Anticorpos Neutralizantes , SARS-CoV-2 , Anticorpos Antivirais , Testes de Neutralização
18.
Vaccine ; 42(12): 3009-3017, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38575433

RESUMO

BACKGROUND: Bio Farma has developed a recombinant protein subunit vaccine (IndoVac) that is indicated for active immunization in population of all ages. This article reported the results of the phase 3 immunogenicity and safety study in Indonesian adults aged 18 years and above. METHODS: We conducted a randomized, active-controlled, multicenter, prospective intervention study to evaluate the immunogenicity and safety of IndoVac in adults aged 18 years and above. Participants who were SARS-CoV-2 vaccine-naïve received two doses of either IndoVac or control (Covovax) with 28 days interval between doses and were followed up until 12 months after complete vaccination. RESULTS: A total of 4050 participants were enrolled from June to August 2022 and received at least one dose of vaccine. The geometric mean ratio (GMR) of neutralizing antibody at 14 days after the second dose was 1.01 (95 % confidence interval (CI) 0.89-1.16), which met the WHO non-inferiority criteria for immunobridging (95 % CI lower bound > 0.67). The antibody levels were maintained through 12 months after the second dose. The incidence rate of adverse events (AEs) were 27.95 % in IndoVac group and 32.15 % in Covovax group with mostly mild intensity (27.70 %). The most reported solicited AEs were pain (14.69 %) followed by myalgia (7.48 %) and fatigue (6.77 %). Unsolicited AEs varied, with each of the incidence rate under 5 %. There were no serious AEs assessed as possibly, probably, or likely related to vaccine. CONCLUSIONS: IndoVac in adults showed favourable safety profile and elicited non-inferior immune response to Covovax. (ClinicalTrials.gov: NCT05433285, Indonesian Clinical Research Registry: INA-R5752S9).


Assuntos
Compostos de Alúmen , COVID-19 , 60470 , Adulto , Humanos , SARS-CoV-2 , Vacinas contra COVID-19/efeitos adversos , Indonésia , Estudos Prospectivos , COVID-19/prevenção & controle , Adjuvantes Imunológicos , Anticorpos Neutralizantes , Mialgia , Imunogenicidade da Vacina , Anticorpos Antivirais , Método Duplo-Cego
19.
Vaccine ; 42(12): 2951-2954, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38584057

RESUMO

Heterologous Sinovac-CoronaVac booster(s) in 12-17-year-olds who had a moderate/severe reaction to Pfizer-BNT162b2 mRNA vaccine was found to safe with no serious adverse events reported. In those primed with 1 dose of Pfizer-BNT162b2 vaccine, subsequent boosters with 2 doses of Sinovac-CoronaVac vaccines achieved neutralizing antibody levels which were comparable to those who had received 2 doses of Pfizer-BNT162b2 vaccines followed by 1 dose of Sinovac-CoronaVac vaccination. Adolescents with 1 Pfizer-BNT162b2 followed by 2 Sinovac-CoronaVac vaccines developed T-cell responses against broad peptides including membrane, nucleoprotein 1 and 2 but levels were highest for Spike protein and lasted until day 150 post-vaccination.


Assuntos
Vacina BNT162 , Vacinação , Vacinas de Produtos Inativados , Adolescente , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162/efeitos adversos , Vacinação/efeitos adversos , Vacinas de Produtos Inativados/efeitos adversos , Criança
20.
J Med Virol ; 96(4): e29611, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38639305

RESUMO

While micronutrients are crucial for immune function, their impact on humoral responses to inactivated COVID-19 vaccination remains unclear. We investigated the associations between seven key micronutrients and antibody responses in 44 healthy adults with two doses of an inactivated COVID-19 vaccine. Blood samples were collected pre-vaccination and 28 days post-booster. We measured circulating minerals (iron, zinc, copper, and selenium) and vitamins (A, D, and E) concentrations alongside antibody responses and assessed their associations using linear regression analyses. Our analysis revealed inverse associations between blood iron and zinc concentrations and anti-SARS-CoV-2 IgM antibody binding affinity (AUC for iron: ß = -258.21, p < 0.0001; zinc: ß = -17.25, p = 0.0004). Notably, antibody quality presented complex relationships. Blood selenium was positively associated (ß = 18.61, p = 0.0030), while copper/selenium ratio was inversely associated (ß = -1.36, p = 0.0055) with the neutralizing ability against SARS-CoV-2 virus at a 1:10 plasma dilution. There was no significant association between circulating micronutrient concentrations and anti-SARS-CoV-2 IgG binding affinity. These findings suggest that circulating iron, zinc, and selenium concentrations and copper/selenium ratio, may serve as potential biomarkers for both quantity (binding affinity) and quality (neutralization) of humoral responses after inactivated COVID-19 vaccination. Furthermore, they hint at the potential of pre-vaccination dietary interventions, such as selenium supplementation, to improve vaccine efficacy. However, larger, diverse studies are needed to validate these findings. This research advances the understanding of the impact of micronutrients on vaccine response, offering the potential for personalized vaccination strategies.


Assuntos
COVID-19 , Selênio , Oligoelementos , Adulto , Humanos , Micronutrientes , Vacinas contra COVID-19 , Cobre , COVID-19/prevenção & controle , SARS-CoV-2 , Zinco , Ferro , Vacinação , Anticorpos Antivirais , Anticorpos Neutralizantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...